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Abstract

Longitudinal multispin orders provide an effective way for measurement of scalar couplings and also to probe molecular inter-
actions and dynamics. Analysis of longitudinal orders has been made in strongly coupled AB and ABX spin systems to determine
the dependence of strong coupling parameter on these orders. Experimental and simulated spectra of various longitudinal orders are
illustrated for these spin systems. This general procedure can be extended to broad range of spin systems to understand the influence
of strong coupling on longitudinal orders.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Longitudinal multispin orders correspond to the
non-equilibrium population distribution and can be
created in spin systems that exhibit J couplings, dipolar
couplings or quadrupolar couplings [1,2]. They provide
information on molecular connectivity, geometry, and
dynamics [1]. The longitudinal orders are also referred
as magnetization modes which are used to analyze the
longitudinal relaxation in coupled spin systems [3–5].
In solution state, longitudinal multispin orders can be
created in molecules that exhibit scalar couplings. Lon-
gitudinal orders serve as an intermediate state in many
polarization transfer experiments [6–11] and sequences
using multispin orders have been designed for editing
different metabolites like lactate and GABA [9–11].
Three-spin longitudinal orders (homonuclear) have
been created by a polarization transfer sequence
employing non-selective pulses [6] or transition selec-
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tive frequency cycling approach [12] that utilize shaped
RF pulses for determination of relative sign of cou-
pling constants. Sequences employing non-selective
pulses edit even and odd longitudinal orders by a p
pulse. It is possible to achieve editing of various longi-
tudinal orders in analogy to distortionless enhancement
by polarization transfer (DEPT) editing sequence [13]
by varying the reconversion flip angle that converts
longitudinal order into observable magnetization and
performing suitable weighted linear combination of
the resulting signal.

The spin systems can be classified as weakly and
strongly coupled depending on the magnetic field
strength that is employed. The distinction between the
two is the relative magnitude of scalar coupling constant
J between two spins and the difference of their Larmor
frequencies [1,2]. Longitudinal orders have been investi-
gated in weakly coupled spin systems where the chemical
shift part of the Hamiltonian is larger than the J cou-
pling part of the Hamiltonian [12]. Our goal was to
investigate the effect of strong coupling parameter on
various longitudinal orders. Exact results are obtained
showing the dependence of the strong coupling on
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various longitudinal orders in a strongly coupled two-
spin 1/2 (AB) and three-spin 1/2 (ABX) systems. This
approach can easily be extended to other strongly cou-
pled systems. At lower magnetic field strengths like 1.5
and 3 T (routinely used for clinical applications) most
of the molecules observed in various pathologies exhibit
strong coupling. The solutions provided here will be of
significance for spectral editing sequences using longitu-
dinal orders and also for two-dimensional techniques
that involve multispin order pathways.
Fig. 1. Energy level diagram of an AB spin system consisting of two-
spin 1/2 nuclei.
2. Theory

The isotropic Hamiltonian of a spin system in solu-
tion state will consist of a Zeeman part describing the
magnetic interaction of nuclear spins with the static
field and the indirect J coupling describing the interac-
tion of pairs of nuclear spins through bonding electron
given by

H ¼
X
i

xiI iz þ
X
i;jði<jÞ

2pJ ijðI izI jz þ I ixI jx þ I iy þ I jyÞ: ð1Þ

When 2pJij � |xi � xj|, the system is said to be weakly
coupled, and the Hamiltonian can be approximated by

H ¼
X
i

xiI iz þ
X
i;jði<jÞ

2pJ ijI izI jz: ð2Þ

Here, Im (m = x,y,z) refers to the components of the
nuclear spin angular momentum operators, xi refers
to the precession frequency of the nuclei, and Jij is
the scalar coupling constant between spins i and j.
The values of Jij depend on the covalent bonds con-
necting spins i and j. They normally have a small range
(<50 Hz) and become very small (<1 Hz) if the spins
are connected by more than 4–5 bonds. When the
chemical shift difference of two-coupled spins becomes
comparable to that of the scalar couplings, the Zeeman
and the coupling parts of the Hamiltonian do not com-
mute. Therefore, the eigenstates of strongly coupled
spins are obtained as the linear combination of the
product states of various spins. The eigenstates for var-
ious strongly coupled spin systems have been previ-
ously solved [14,15]. Various theoretical approaches
have been employed for describing strongly coupled
spin systems [1,16,17]. In this study, the transition
selective approach is employed for obtaining solutions
to determine the response of any arbitrary flip angle
on each transition of strongly coupled AB and ABX
spin systems.

2.1. AB spin system

In an AB spin system, the chemical shift difference
(xA � xB) is comparable with the magnitude of the cou-
pling constant JAB between the A and B spins. The
Hamiltonian for strongly coupled AB (spin 1/2) system
can be expressed as

H ¼ x1I1z þ x2I2z þ 2pJ 12ðI1zI2z þ I1xI2x þ I1yI2yÞ: ð3Þ
I1m and I2m are the m-components of the nuclear spin
angular momentum operators for A and B nuclei; x1

and x2 are the precession frequencies of A and B nu-
clei and J12 is the scalar coupling constant. A number
of biologically important molecules exhibit AB spectral
characteristics. For example, citrate (which is an
important metabolite marker for prostate cancer [18])
is an AB spin system. The eigenstates for the AB
spin system are |aaæ, cosh|abæ + sinh|baæ, cosh|baæ �
sinh|abæ, and |bbæ where h ¼ 1

2
tan�1ð 2pJAB

xA�xB
Þ is the mix-

ing angle. In weak coupling limit, the angle h is very
small and the eigenstates will be |aaæ, |abæ, |baæ, and
|bbæ for the two-spin 1/2 system [1,2]. The energy level
diagram with the eigenstates of the AB spin system is
shown in Fig. 1.

The transition selective Hamiltonian for each of the
four AB transitions can be expressed in terms of shift
and polarization operators. The solutions for the effect
of x phase transition selective pulse with arbitrary flip
angle b on the equilibrium density matrix q0 = I1z + I2z
is given for the four transitions:

j1ih2j ) I1z 1
2
sin2hðcos b� 1Þ þ 1

� �
þ I1zI2zðcos b� 1Þ

þ I2z 1
2
cos2hðcos b� 1Þ þ 1

� �
� I1zI2y cos h sin b

� I1y12 sin h sin b� I2y12 cos h sin b

� ðI1yI2y þ I1xI2xÞ cos h � sin hðcos b� 1Þ
� I1yI2z sin h sin b; ð4Þ

j3ih4j ) I1z 1
2
sin2hðcos b� 1Þ þ 1

� �
� I1zI2zðcos b� 1Þ

þ I2z 1
2
cos2hðcos b� 1Þ þ 1

� �
þ I1zI2y cos h sin b

þ 1
2
I1y sin h sin b� 1

2
I2y cos h sin b

� ðI1yI2y þ I1xI2xÞ cos h � sin hðcos b� 1Þ
� I1yI2z sin h sin b; ð5Þ

j3ih1j ) I1z 1
2
cos2hðcos b� 1Þ þ 1

� �
þ I1zI2zðcos b� 1Þ

þ I2z 1
2
sin2hðcos b� 1Þ þ 1

� �
þ I1zI2y sin h sin b

� I1y12 cos h sin bþ I2y12 sin h sin b

þ ðI1yI2y þ I1xI2xÞ cos h � sin hðcos b� 1Þ
� I1yI2z cos h sin b; ð6Þ



Table 1
Longitudinal orders and ZQCs created in the four transitions in AB spin system by a x phase transition selective pulse with a flip angle b = 180�

|1æ Æ2| |3æ Æ4| |1æ Æ3| |2æ Æ4|

One-spin order �I1zsin
2h + I1z �I1zsin

2h + I1z �I1zcos
2h + I1z �I1zcos

2h + I1z
�I2zsin

2h + I2z �I2zsin
2h + I2z �I2zcos

2h + I2z �I2zcos
2h + I2z

Two-spin order �2I1zI2z 2I1zI2z �2I1zI2z 2I1zI2z
2(I1xI2x + I1yI2y) 2(I1xI2x + I1yI2y) �2(I1xI2x + I1yI2y) �2(I1xI2x + I1yI2y)

ZQC sinh · cosh sinh · cosh sinh · cosh sinh · cosh

Fig. 2. Energy level diagram of an ABX spin system consisting of three-
spin 1/2 nuclei. The numbers correspond to the following eigenstates. 1.
|aaaæ, 2. |aabæ, 3. cosh+|abaæ + sinh+|baaæ, 4.�sinh+|abaæ + cosh+|baaæ,
5. cosh�|abbæ + sinh�|babæ, 6. �sinh�|abbæ + cosh�|babæ, 7. |bbaæ, 8.
|bbbæ where h� ¼ 1

2
tan�1 2pJAB

D� and D± = xA � xB ± p(JAX � JBX).
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j4ih2j ) I1z 1
2
cos2hðcos b� 1Þ þ 1

� �
� I1zI2zðcos b� 1Þ

þ I2z 1
2
sin2hðcos b� 1Þ þ 1

� �
þ I1zI2y sin h sin b

� 1
2
I1y cos h sin b� 1

2
I2y sin h sin b

þ ðI1yI2y þ I1xI2xÞ cos h � sin hðcos b� 1Þ
þ I1yI2z cos h sin b: ð7Þ

The solutions shown in Eqs. (4)–(7) provide direct insight
into the various terms created for arbitrary flip angles.
Using the above expressionsTable 1 shows theone-spinor-
der, two-spin order, and zero quantum coherence�s (ZQC)
created by a 180� flip angle for all the four transitions.

2.2. ABX spin system

When the chemical shift difference between two of the
three nuclei (AB) is comparable to their coupling to each
other, and both are coupled to a third nucleus (X) with a
chemical shift well away from the chemical shifts of other
two, the spin system is designated as ABX. Such ABX
spectra are common in a number of metabolites, includ-
ing amino acids present in different tumors. The Hamil-
tonian for an ABX spin system can be expressed as

H ¼ x1I1z þ x2I2z þ x3I3z þ 2pJ 12ðI1zI2z þ I1xI2x

þ I1yI2yÞ þ 2pJ 13ðI1zI3zÞ þ 2pJ 23ðI2zI3zÞ; ð8Þ

where I1m, I2m, and I3m are the m-components of the nu-
clear spin angular momentum operators for A, B, and X
nuclei; x1, x2, and x3 are the precession frequencies of
the nuclei A, B, and X, respectively. J12 indicates the
coupling between A and B nuclei, J13 is the coupling be-
tween A and X nuclei, and J23 is the coupling between B
and X nuclei. The transition-selective Hamiltonian for
the ABX transitions can be defined by employing the
eight eigenstates shown in the energy level diagram of
Fig. 2. The two sets of AB subspectra are defined by
the transitions |1æ Æ4|, |2æ Æ6|, |3æ Æ7|, and |5æ Æ8| and |1æ Æ3|,
|2æ Æ5|, |4æ Æ7|, and |6æ Æ8| and the X part of the ABX spec-
trum is formed by the transitions |1æ Æ2|, |3æ Æ5|, |4æ Æ6|, and
|7æ Æ8| and two combination lines |3æ Æ6| and |4æ Æ5|. The
combination lines usually appear as outerlines in the
highfield and lowfield of the X spin multiplet. They
are usually referred as three-spin single quantum coher-
ences as it involves absorption of two quanta with simul-
taneous emission of one quantum [19]. They are more
often weak in intensity and disappear in the weakly cou-
pled AMX spectrum. The combination lines are not
considered any further in this work. The x phase transi-
tion selective pulse Hamiltonian for all transitions of
ABX spin system and the solutions for issuing any arbi-
trary flip angle on these transitions were derived as de-
scribed for the AB spin system. Considering the
symmetry between the sets of AB transitions corre-
sponding to X = ±1/2 states, it is sufficient to obtain
solutions for one set of AB spin transitions. The solution
for any arbitrary flip angle for the AB spin transitions
|1æ Æ4|, |2æ Æ6|, |3æ Æ7|, and |5æ Æ8| are given by Eqs. (9)–(12).

j1ih4j) � I1y
4

coshþðsinbÞþ I2y
4

sinhþðsinbÞ

� I1y
2
ðI2zþSzÞcoshþðsinbÞþ

I2y
2
ðI1zþSzÞ

� sinhþðsinbÞ� I1y I2zSz cosh
þðsinbÞ

þ I1zI2ySz sinh
þðsinbÞ

þ I1z
1

4
cos2hþðcosb�1Þþ1

� �

þ I2z
1

4
sin2hþðcosb�1Þþ1

� �

þ1

2
I1zI2zðcosb�1Þþ1

2
I1zSzcos

2hþðcosb�1Þ

þ1

2
I2zSzsin

2hþðcosb�1Þþ I1zI2zSzðcosb�1Þ

þ1

2
ðI1xI2xþ I1y I2yÞsinhþ coshþðcosb�1Þ

þðI1xI2xþ I1y I2yÞSz sinh
þ coshþðcosb�1Þ; ð9Þ



� ðI1xI2y � I1yI2xÞSx sinðh � h Þ sinb; ð15Þ
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j2ih6j) � I1y
4

cosh�ðsinbÞþ I2y
4

sinh�ðsinbÞ

� I1y
2
ðI2z�SzÞcosh�ðsinbÞþ

I2y
2
ðI1z�SzÞ

� sinh�ðsinbÞþ I1yI2zSz cosh
�ðsinbÞ

� I1zI2ySz sinh
�ðsinbÞ

þ I1z
1

4
cos2h�ðcosb�1Þþ1

� �

þ I2z
1

4
sin2h�ðcosb�1Þþ1

� �

�1

2
I1zI2zðcosb�1Þ�1

2
I1zSzcos

2h�ðcosb�1Þ

�1

2
I2zSzsin

2h�ðcosb�1Þ� I1zI2zSzðcosb�1Þ

þ1

2
ðI1xI2xþ I1y I2yÞsinh� cosh�ðcosb�1Þ

�ðI1xI2xþ I1y I2yÞSz sinh
� cosh�ðcosb�1Þ; ð10Þ

j3ih7j) � I1y
4
coshþðsinbÞ� I2y

4
sinhþðsinbÞ

þ I1y
2
ðI2z�SzÞcoshþðsinbÞþ

I2y
2
ðI1z�SzÞ

� sinhþðsinbÞþ I1yI2zSz cosh
þðsinbÞ

þ I1zI2ySz sinh
þðsinbÞ

þ I1z
1

4
cos2hþðcosb�1Þþ1

� �

þ I2z
1

4
sin2hþðcosb�1Þþ1

� �

�1

2
I1zI2zðcosb�1Þþ1

2
I1zSzcos

2hþðcosb�1Þ

þ1

2
I2zSzsin

2hþðcosb�1Þ� I1zI2zSzðcosb�1Þ

þ1

2
ðI1xI2xþ I1yI2yÞsinhþ coshþðcosb�1Þ

þðI1xI2xþ I1yI2yÞSz sinh
þ coshþðcosb�1Þ; ð11Þ

j5ih8j ) � I1y
4

cosh�ðsinbÞ� I2y
4

sinh�ðsinbÞ

þ I1y
2
ðI2zþ SzÞcosh�ðsinbÞþ

I2y
2
ðI1zþ SzÞ

� sinh�ðsinbÞ� I1yI2zSz cosh
�ðsinbÞ

� I1zI2ySz sinh
�ðsinbÞ

þ I1z
1

4
cos2h�ðcosb� 1Þþ 1

� �

þ I2z
1

4
sin2h�ðcosb� 1Þþ 1

� �

� 1

2
I1zI2zðcosb� 1Þ� 1

2
I1zSzcos

2h�ðcosb� 1Þ

� 1

2
I2zSzsin

2h�ðcosb� 1Þþ I1zI2zSzðcosb� 1Þ

þ 1

2
ðI1xI2x þ I1yI2yÞ sinh� cosh�ðcosb� 1Þ

� ðI I þ I I ÞS sinh� cosh�ðcosb� 1Þ: ð12Þ
1x 2x 1y 2y z
Using Eqs. (9)–(12) Table 2 shows the one-spin
order, two-spin order, and ZQCs created by a 180�
flip angle for the AB subspectrum formed by |1æ Æ4|,
|2æ Æ6|, |3æ Æ7|, and |5æ Æ8|. Similarly the solution for
any arbitrary flip angle for the X-spin transitions
|1æ Æ2|, |3æ Æ5|, |4æ Æ6|, and |7æ Æ8| are given Eqs. (13)–
(16).

j1ih2j ) ðSy þ 2I1zSy þ 2I2zSy þ 4I1zI2zSyÞð�1
4
Þ

� ðsin bÞ þ Sz þ ðSz þ 2I1zSz þ 2I2zSz

þ 4I1zI2zSzÞð14Þðcos b� 1Þ; ð13Þ

j3ih5j ) � ðI1z � I2zÞ
1

4
sinðhþ þ h�Þ sinðhþ � h�Þðcos b� 1Þ þ 1

� �

þ Sz
cos b� 1

4
þ 1

� �
� I1zI2zSztðcos b� 1Þ

þ 1

2
ðI1zSz � I2zSzÞ cosðhþ þ h�Þ

� cosðhþ � h�Þðcos b� 1Þ þ ðI1xI2x þ I1yI2yÞ
� Sz sinðhþ þ h�Þ cosðhþ � h�Þ

� ðcos b� 1Þ þ 1

2
ðI1xI2x þ I1yI2yÞ sinðhþ � h�Þ

� cosðhþ þ h�Þðcos b� 1Þ � Sy

4

� cosðhþ � h�Þ sin bþ ðI2zSy � I1zSyÞ
1

2
� cosðhþ þ h�Þ sin bþ I1zI2zSy cosðhþ � h�Þ
� sin b� ðI1xI2x þ I1yI2yÞSy sinðhþ þ h�Þ
� sin b� ðI1xI2y � I1yI2xÞ
� Sx sinðhþ � h�Þ sin b; ð14Þ

j4ih6j ) ðI1z � I2zÞ

� 1

4
sinðhþ þ h�Þ sinðhþ � h�Þðcosb� 1Þ þ 1

� �

þ Sz
cosb� 1

4
þ 1

� �
� I1zI2zSzðcosb� 1Þ

� 1

2
ðI1zSz � I2zSzÞðcosðhþ þ h�Þ

� cosðhþ � h�Þðcosb� 1ÞÞ � ðI1xI2x þ I1yI2yÞ
� Sz sinðhþ þ h�Þ cosðhþ � h�Þ

� ðcosb� 1Þ � 1

2
ðI1xI2x þ I1yI2yÞ sinðhþ � h�Þ

� cosðhþ þ h�Þðcosb� 1Þ � Sy

4
cosðhþ � h�Þ

� sinb� ðI2zSy � I1zSyÞ
1

2
cosðhþ þ h�Þ

� sinbþ I1zI2zSy cosðhþ � h�Þ sinb
þ ðI1xI2x þ I1yI2yÞSy sinðhþ þ h�Þ sinb

þ �



Table 2
Longitudinal orders and ZQCs created in the following four AB transitions in ABX spin system by a x phase transition selective pulse with a flip
angle b = 180�

|1æ Æ4| |2æ Æ6| |3æ Æ7| |5æ Æ8|

One-spin order I1zð�1
2cos

2hþ þ 1Þ I1zð�1
2cos

2h� þ 1Þ I1zð�1
2cos

2hþ þ 1Þ I1zð�1
2cos

2h� þ 1Þ
I2zð�1

2sin
2hþ þ 1Þ I2zð�1

2sin
2h� þ 1Þ I2zð�1

2sin
2hþ þ 1Þ I2zð�1

2sin
2h� þ 1Þ

Two-spin order �I1zI2z �I1zI2z I1zI2z I1zI2z
�I1zSzcos

2h+ I1zSzcos
2h� �I1zSzcos

2h+ I1zSzcos
2h�

�I2zSzsin
2h+ I2zSzsin

2h� �I2zSzsin
2h+ I2zSzsin

2h�

Three-spin order �2I1zI2zSz 2I1zI2zSz 2I1zI2zSz �2I1zI2zSz

ZQC �(I1xI2x + I1yI2y) �(I1xI2x + I1yI2y) �(I1xI2x + I1yI2y) �(I1xI2x + I1yI2y)
sinh+ · cosh+ sinh� · cosh� sinh+ · cosh+ sinh� · cosh�

�2(I1xI2x + I1yI2y)Sz 2(I1xI2x + I1yI2y)Sz �2(I1xI2x + I1yI2y)Sz +2(I1xI2x + I1yI2y)Sz

sinh+ · cosh+ sinh� · cosh� sinh+ · cosh+ sinh� · cosh�

Table 3
Longitudinal orders and ZQCs created in the following four X spin transitions of ABX spin system by a x phase transition selective pulse with a flip
angle b = 180 �

|1æÆ2| |3æÆ5| |4æÆ6| |7æÆ8|

One-spin order Sz
2

Sz
2

Sz
2

Sz
2

�I1z þ I2z
� 1

2 sinðh
þ þ h�Þ�

sinðhþ � h�Þ þ 1

2
4

3
5 I1z � I2z

� 1
2 sin hþ þ h�

� �
�

sinðhþ � h�Þ þ 1

� �

Two-spin order �I1zSz �I1zSz
cosðhþ þ h�Þ�
cosðhþ � h�Þ

� �
I1zSz

cosðhþ þ h�Þ�
cosðhþ � h�Þ

� �
I1zSz

�I2zSz I2zSz
cosðhþ þ h�Þ�
cosðhþ � h�Þ

� �
�I2zSz

cosðhþ þ h�Þ�
cosðhþ � h�Þ

� �
I2zSz

Three-spin order �2I1zI2zSz 2I1zI2zSz 2I1zI2zSz �2I1zI2zSz

ZQC �(I1xI2x + I1yI2y) (I1xI2x + I1yI2y)
sin (h+ � h�) · cos(h+ + h�) sin (h+ � h�) · cos (h+ + h�)
�2(I1x I2x + I1yI2y)Sz 2(I1x I2x + I1yI2y)Sz

sin (h+ +h�) · cos(h+ � h�) sin (h+ + h�) · cos (h+ � h�)
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j7ih8j ) ð�Sy þ 2I1zSy þ 2I2zSy

� 4I1zI2zSyÞ
1

4

� �
ðsin bÞ þ Sz

þ ð�Sz þ 2I1zSz þ 2I2zSz

� 4I1zI2zSzÞ � 1

4

� �
ðcos b� 1Þ: ð16Þ

Table 3 shows the results obtained from Eqs. (13)–(16)
for 180� flip angle on the X spin transitions.
3. Experimental

3.1. Experimental data

All experiments were performed on a Varian Unity
600 MHz high resolution NMR system. The frequency
cycling experiment [12] was programmed using the Var-
ian software (VNMR). This approach involves frequen-
cy-selective inversion of a single transition, followed by a
hard pulse of fixed phase and optimum flip angle, phase
alternating the receiver on successive scans when the
selective inversion frequency is incremented. This ap-
proach requires at least one well resolved multiplet in
the spectrum. Longitudinal multispin orders have to be
reconverted to observable magnetization with a flip angle
less than 90�. The optimum reconversion pulse flip angle
/ for longitudinal order is given by the / ¼ sin�1½ 1ffiffiffi

N
p �

where N refers to the size of the order [12]. Using this
expression the optimum flip angle / for reconversion
of two-spin order is 45� and for three-spin order amounts
to 35�. Selective excitation was achieved using low
power, long duration Gaussian shaped pulses. The
lengths of these pulses were tailored to achieve sufficient
selectivity in the frequency domain without perturbing
the nearest line depending on the magnitude of the J cou-
pling. The duration of the pulses applied varied from 200
to 300 ms. Trisodium citrate dissolved in D2O was used
as an AB spin system. Styrene dibromide dissolved in
CDCl3 includes a ABX spin system.
3.2. Simulated data

To verify the solutions for the transition selective
pulses on AB and ABX spin systems to separate the
various longitudinal orders theoretical simulations was
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performed using NMR-SCOPE program [17]. The one
pulse experiment was simulated by single hard pulse fol-
lowed by detection period under strong coupling evolu-
tion. The frequency cycling experiment was simulated by
transition selective Gaussian pulse followed by a opti-
mum h� hard pulse. On successive scans the selective
inversion frequency was incremented. The strong cou-
pling evolution was employed during the detection per-
iod. The receiver phase was determined from the
theoretical solutions shown for b = 180� in Table 1 for
AB and Tables 2 and 3 for ABX spin system.
4. Results and discussion

Fig. 3 shows the results from experiments performed
on trisodium citrate (AB spin system). Fig. 3A shows
the spectrum obtained with a single pulse. The J cou-
pling between the two protons involved is 15 Hz and
the chemical shift separation between them is 80 Hz
clearly indicating a AB spin system. Fig. 3B shows
the two-spin order spectrum obtained from the same
molecule using the frequency cycling approach. The
solutions shown in Table 1 for b = 180� clearly indicate
that when a frequency cycle of (+1, �2) or (�1, +2) is
run on |1æ Æ2|, |3æ Æ4| or |1æ Æ3|, |2æ Æ4| transitions pure two-
Fig. 3. Experimental spectra of trisodium citrate. (A) One pulse
spectrum of trisodium citrate obtained with single scan. (B) Two-spin
order spectrum of trisodium citrate obtained with two scans by
running a frequency cycle of 1, �2 on the low field doublet.
spin order can be separated from all other one-spin or-
der and ZQCs, regardless of the coupling strength. The
two-spin order spectrum shown was created with a fre-
quency cycle of (+1, �2) on transitions |1æ Æ2|, |3æ Æ4|.
The prefixed sign on the frequency cycle indicates the
receiver acquisition phase. The simulated spectra of tri-
sodium citrate is shown in Fig. 4. Fig. 4A shows the
one pulse simulation and Fig. 4B shows two-spin order
simulation obtained by running the same frequency cy-
cle employed for experimental spectrum. Note the
excellent agreement between the experimental and the-
oretical spectra.

Table 2 shows the various terms created in the AB
subspectra (|1æ Æ4|, |2æ Æ6|, |3æ Æ7|, and |5æ Æ8|) by a 180�
pulse. The results indicate that the frequency cycling
experiment can be performed in one of the two AB sub-
spectra to separate the AB two-spin order from all other
longitudinal orders and ZQCs by running a frequency
cycle of �1, �2, +3, +4 or +1, +2, �3, �4 from low
field transition to high field transition. Fig. 5 shows
the experimental spectra from styrene dibromide. Fig.
5A shows the ABX part of the spectrum obtained by a
single pulse. The chemical shift separation between A
and B spins is 30 Hz and the JAB is �11 Hz. The chem-
ical shift separation between A and X nuclei is 673 Hz
and between B and X is 643 Hz. The JBX coupling is
10.5 Hz and JAX coupling is 5 Hz. Fig. 5B shows the
AB two-spin order spectrum obtained by running a fre-
quency cycle of �1, �2 +3, +4 on the low field AB mul-
tiplet where all the four transitions are resolved. Table 2
also indicates that we can separate ABX three-spin or-
der by running a frequency cycle of �1, +2, +3, �4 or
Fig. 4. Simulated spectra of trisodium citrate. (A) One pulse simula-
tion. (B) Two-spin order simulation obtained by running a frequency
cycle of 1, �2 on the low field doublet.



Fig. 6. Simulated spectra of styrene dibromide. (A) One pulse
simulation. (B) Two-spin order simulated spectrum by frequency cycle
of �1, �2, +3, +4 on the low field AB multiplet. (C) Three-spin order
simulated spectrum obtained by frequency cycle of �1, +2, +3, �4 on
the X multiplet.

Fig. 5. Experimental spectra of styrene dibromide. (A) ABX part of
the spectrum obtained by a single pulse. (B) Two-spin order (AB)
spectrum obtained with four scans by running a frequency cycle of �1,
�2, +3, +4 on the low field AB multiplet. (C) Three-spin order
spectrum obtained with four scans by running a frequency cycle of �1,
+2, +3, �4 on the X spin transitions.
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+1, �2, �3, +4 on one of the AB multiplets. Table 3
shows the various terms created in the four X spin tran-
sitions by a 180� pulse. It is possible to separate the
ABX three-spin order by running a frequency cycle of
�1, +2, +3, �4 or +1,�2, �3, +4 on the X spin transi-
tions |1æ Æ2|, |3æ Æ5|, |4æ Æ6|, and |7æ Æ8|. Fig. 5C shows the
ABX three-spin order spectrum obtained by running a
frequency cycle of �1, +2, +3, �4 on the X spin transi-
tions. Fig. 6 shows the simulated spectra of styrene dibr-
omide. Fig. 6A shows the one pulse simulation and Fig.
6B shows the AB two-spin order simulation obtained
with same frequency cycle as employed for the experi-
mental spectrum shown in Fig. 5B. Note the simulated
AB two-spin order spectrum resolves the overlapping
transition in the high field AB multiplet which is not
seen in the experimental spectrum due to the cancella-
tion of the antiphase signal by line broadening. Fig.
6C shows the three-spin order simulation obtained by
the same frequency cycle employed for experimental
spectrum shown in Fig. 5C. From Tables 2 and 3 it is
clear that we cannot separate the AX or BX two-spin or-
der independent of the strong coupling parameter. The
results indicate that this approach can be employed for
separating and analyzing the longitudinal orders in
broad range of spin systems that exhibit strong
coupling.
5. Conclusions

Longitudinal orders have been investigated in
strongly coupled AB and ABX spin systems. Solutions
are given for any arbitrary flip angle for all transitions
in both these spin systems. Experimental and theoretical
spectra of longitudinal orders are shown for these spin
systems. This work might lead to applications in metab-
onomics for studying in vivo metabolic profiles; spectral
editing techniques at clinical field strengths using longi-
tudinal orders and also to improve quantification of
metabolites when detected through longitudinal order
pathways. Other applications include determination of
relative sign of scalar couplings and measurement of
relaxation rates of longitudinal multispin orders.
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